54 research outputs found

    ADMarker: A Multi-Modal Federated Learning System for Monitoring Digital Biomarkers of Alzheimer's Disease

    Full text link
    Alzheimer's Disease (AD) and related dementia are a growing global health challenge due to the aging population. In this paper, we present ADMarker, the first end-to-end system that integrates multi-modal sensors and new federated learning algorithms for detecting multidimensional AD digital biomarkers in natural living environments. ADMarker features a novel three-stage multi-modal federated learning architecture that can accurately detect digital biomarkers in a privacy-preserving manner. Our approach collectively addresses several major real-world challenges, such as limited data labels, data heterogeneity, and limited computing resources. We built a compact multi-modality hardware system and deployed it in a four-week clinical trial involving 91 elderly participants. The results indicate that ADMarker can accurately detect a comprehensive set of digital biomarkers with up to 93.8% accuracy and identify early AD with an average of 88.9% accuracy. ADMarker offers a new platform that can allow AD clinicians to characterize and track the complex correlation between multidimensional interpretable digital biomarkers, demographic factors of patients, and AD diagnosis in a longitudinal manner

    QSYQ Attenuates Oxidative Stress and Apoptosis Induced Heart Remodeling Rats through Different Subtypes of NADPH-Oxidase

    Get PDF
    We aim to investigate the therapeutic effects of QSYQ, a drug of heart failure (HF) in clinical practice in China, on a rat heart failure (HF) model. 3 groups were divided: HF model group (LAD ligation), QSYQ group (LAD ligation and treated with QSYQ), and sham-operated group. After 4 weeks, rats were sacrificed for cardiac injury measurements. Rats with HF showed obvious histological changes including necrosis and inflammation foci, elevated ventricular remodeling markers levels(matrix metalloproteinases-2, MMP-2), deregulated ejection fraction (EF) value, increased formation of oxidative stress (Malondialdehyde, MDA), and up-regulated levels of apoptotic cells (caspase-3, p53 and tunnel) in myocardial tissue. Treatment of QSYQ improved cardiac remodeling through counter-acting those events. The improvement of QSYQ was accompanied with a restoration of NADPH oxidase 4 (NOX4) and NADPH oxidase 2 (NOX2) pathways in different patterns. Administration of QSYQ could attenuate LAD-induced HF, and AngII-NOX2-ROS-MMPs pathway seemed to be the critical potential targets for QSYQ to reduce the remodeling. Moreover, NOX4 was another key targets to inhibit the p53 and Caspase3, thus to reduce the hypertrophy and apoptosis, and eventually provide a synergetic cardiac protective effect

    Loss-of-function mutations in TNFAIP3 leading to A20 haploinsufficiency cause an early-onset autoinflammatory disease

    Get PDF
    Systemic autoinflammatory diseases are driven by abnormal activation of innate immunity. Herein we describe a new disease caused by high-penetrance heterozygous germline mutations in TNFAIP3, which encodes the NF-B regulatory protein A20, in six unrelated families with early-onset systemic inflammation. The disorder resembles Behçet\u27s disease, which is typically considered a polygenic disorder with onset in early adulthood. A20 is a potent inhibitor of the NF-B signaling pathway. Mutant, truncated A20 proteins are likely to act through haploinsufficiency because they do not exert a dominant-negative effect in overexpression experiments. Patient-derived cells show increased degradation of IBα and nuclear translocation of the NF-B p65 subunit together with increased expression of NF-B-mediated proinflammatory cytokines. A20 restricts NF-B signals via its deubiquitinase activity. In cells expressing mutant A20 protein, there is defective removal of Lys63-linked ubiquitin from TRAF6, NEMO and RIP1 after stimulation with tumor necrosis factor (TNF). NF-B-dependent proinflammatory cytokines are potential therapeutic targets for the patients with this disease

    Fundamental optical processes in armchair carbon nanotubes

    Get PDF
    Single-wall carbon nanotubes provide ideal model one-dimensional (1-D) condensed matter systems in which to address fundamental questions in many-body physics, while, at the same time, they are leading candidates for building blocks in nanoscale optoelectronic circuits. Much attention has been recently paid to their optical properties, arising from 1-D excitons and phonons, which have been revealed via photoluminescence, Raman scattering, and ultrafast optical spectroscopy of semiconducting carbon nanotubes. On the other hand, dynamical properties of metallic nanotubes have been poorly explored, although they are expected to provide a novel setting for the study of electronヨhole pairs in the presence of degenerate 1-D electrons. In particular, (n,n)-chirality, or armchair, metallic nanotubes are truly gapless with massless carriers, ideally suited for dynamical studies of TomonagaヨLuttinger liquids. Unfortunately, progress towards such studies has been slowed by the inherent problem of nanotube synthesis whereby both semiconducting and metallic nanotubes are produced. Here, we use post-synthesis separation methods based on density gradient ultracentrifugation and DNA-based ion-exchange chromatography to produce aqueous suspensions strongly enriched in armchair nanotubes. Through resonant Raman spectroscopy of the radial breathing mode phonons, we provide macroscopic and unambiguous evidence that density gradient ultracentrifugation can enrich ensemble samples in armchair nanotubes. Furthermore, using conventional, optical absorption spectroscopy in the nearinfrared and visible range, we show that interband absorption in armchair nanotubes is strongly excitonic. Lastly, by examining the G-band mode in Raman spectra, we determine that observation of the broad, lower frequency (G!) feature is a result of resonance with non-armchair “metallic” nanotubes. These !ndings regarding the fundamental optical absorption and scattering processes in metallic carbon nanotubes lay the foundation for further spectroscopic studies to probe many-body physical phenomena in one dimension

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe

    Prevalence, associated factors and outcomes of pressure injuries in adult intensive care unit patients: the DecubICUs study

    Get PDF
    Funder: European Society of Intensive Care Medicine; doi: http://dx.doi.org/10.13039/501100013347Funder: Flemish Society for Critical Care NursesAbstract: Purpose: Intensive care unit (ICU) patients are particularly susceptible to developing pressure injuries. Epidemiologic data is however unavailable. We aimed to provide an international picture of the extent of pressure injuries and factors associated with ICU-acquired pressure injuries in adult ICU patients. Methods: International 1-day point-prevalence study; follow-up for outcome assessment until hospital discharge (maximum 12 weeks). Factors associated with ICU-acquired pressure injury and hospital mortality were assessed by generalised linear mixed-effects regression analysis. Results: Data from 13,254 patients in 1117 ICUs (90 countries) revealed 6747 pressure injuries; 3997 (59.2%) were ICU-acquired. Overall prevalence was 26.6% (95% confidence interval [CI] 25.9–27.3). ICU-acquired prevalence was 16.2% (95% CI 15.6–16.8). Sacrum (37%) and heels (19.5%) were most affected. Factors independently associated with ICU-acquired pressure injuries were older age, male sex, being underweight, emergency surgery, higher Simplified Acute Physiology Score II, Braden score 3 days, comorbidities (chronic obstructive pulmonary disease, immunodeficiency), organ support (renal replacement, mechanical ventilation on ICU admission), and being in a low or lower-middle income-economy. Gradually increasing associations with mortality were identified for increasing severity of pressure injury: stage I (odds ratio [OR] 1.5; 95% CI 1.2–1.8), stage II (OR 1.6; 95% CI 1.4–1.9), and stage III or worse (OR 2.8; 95% CI 2.3–3.3). Conclusion: Pressure injuries are common in adult ICU patients. ICU-acquired pressure injuries are associated with mainly intrinsic factors and mortality. Optimal care standards, increased awareness, appropriate resource allocation, and further research into optimal prevention are pivotal to tackle this important patient safety threat

    Estimation and Mapping of Actual and Potential Grassland Root Carbon Storage: A Case Study in the Altay Region, China

    No full text
    The actual root carbon storage (ARCS) and potential root carbon storage (PRCS) of grasslands play an important role in the global carbon balance and carbon neutralization. However, estimation of these indicators is difficult. In addition, their spatial patterns and crucial driving factors also require clarification. In this study, an approach for accurate estimation of ARCS and PRCS was developed incorporating a support vector machine model and high-accuracy surface modeling. Based on field data collected from Altay Prefecture in 2015, the estimation accuracy (R2) of root biomass in the 0–10, 10–20, and 20–30 cm soil layers of grassland were 0.73, 0.63, and 0.60, respectively. In addition, the spatial patterns of actual root carbon density (ARCD) and potential root carbon density (PRCD) were analyzed. The ARCD increased with the increase in elevation. High PRCD was located on hillsides with a gentle slope. The dominant interaction factors for the ARCD spatial pattern were temperature and precipitation, whereas the main interaction factors for the PRCD pattern were temperature and slope. The grassland ARCS and PRCS in Altay Prefecture were estimated to be 48.52 and 22.69 Tg C, respectively. We suggest there is considerable capacity to increase grassland ARCS in the study area

    Rainfall Physical Partitioning and Chemical Characteristics in Evergreen Coniferous and Deciduous Broadleaved Forest Stands in a High Nitrogen Deposition Region, China

    No full text
    Atmospheric rainfall is one of the major sources of water and nutrient inputs in forest stands. Understanding the atmospheric rainfall partitioning and hydrochemical fluxes of forest stands is critical for forest management and monitoring regional atmospheric pollution, especially in high N deposition regions. In this study, annual rainfall collections were implemented to investigate rainfall partitioning, element concentrations, and element fluxes in an evergreen coniferous forest (ECF) stand, a deciduous broadleaved forest (DBF) stand, and open area field (OAF) in a high N deposition region, China. Rainfall in the ECF and DBF was partitioned into throughfall, stemflow, and interception loss, which accounted for 74.7%, 4.8%, and 20.5% of the gross annual rainfall in the ECF stand, respectively; and 79.8%, 5.8%, and 14.4% of the gross annual rainfall in the DBF stand, respectively. Rainfall physical partitioning chemical characteristics varied with forest stand type. The amount of throughfall and stemflow in the ECF stand was lower than that in the DBF stand; the interception loss in the ECF stand was higher than that in the DBF stand. Element concentrations and element fluxes increased as rainfall passed through forest canopies in the high N deposition region. The stemflow pH in the ECF was lower than that in the DBF stand, the concentrations of NO3−-N, Cl−, and SO42−-S in stemflow in the ECF stand were higher than those in the DBF stand, and the concentrations of K+, Na+, Ca2+, Mg2+ and NH4+-N in stemflow in the ECF stand were lower than those in the DBF stand. The inorganic N deposition was 52.7 kg ha−1 year−1 for the OAF, 110.9 kg ha−1 year−1 for the ECF stand, and 99.6 kg ha−1 year−1 for the DBF stand; stemflow accounted for 15.1% and 19.2% of inorganic N deposition in the ECF stand and the DBF stand, respectively. In the present study, given the similar rainfall characteristics and meteorological conditions, the differences in rainfall partitioning and chemical characteristics between the ECF stand and the DBF stand could largely be attributed to their differences in stand characteristics. The results of the study will facilitate a greater understanding of the atmospheric rainfall partitioning and hydrochemical fluxes of forest stands in a high nitrogen deposition region
    corecore